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I. INTRODUCTION 

Many predict that artificial intelligence technologies will transform the 

economy, and some point to the legal profession as one of the fields ripe 
to be transformed. For example, Richard Susskind, president of the 
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Society for Computers and Law, stated that “[AI] will disrupt not just the 
world of practising lawyers but also our common perception of the legal 
process.”1 Susskind envisions: 

an online service that contains vast stores of structured and unstructured 

legal materials (primary and secondary sources, and legal analysis), that 

can understand legal problems spoken to it in natural language, that can 

analyse and classify the fact pattern inherent in these problems, that can 

draw conclusions and offer legal advice, and that can even express this 

guidance in some computer-simulated voice.2 

 Many scholars have dedicated their careers to pursuing similar visions. 
For thirty years, scholars in the field of “law and AI”3 have explored the 
extent to which tasks performed by lawyers and judges can be made 
computable or computer-assisted. In particular, numerous scholars have 
argued that legal reasoning is amenable to computation. This Article 
contends that while artificial intelligence-based software is likely to 
improve legal research and make lawyers more efficient, it is unlikely to 
replace traditional legal work or otherwise transform the practice of law. 

II. WHAT AI IS AND WHAT IT CAN DO 

Artificial intelligence is not an easy subject to understand or research. 
The inner workings of neural networks—currently the dominant AI 
technology—are largely inaccessible to people without a background in 

mathematics and computer science.4 AI is an increasingly pervasive and 
important part of modern life, so we unquestionably need to research it 
outside the realm of computer science. But there is a danger that 
scholarship not rooted in a technical understanding of AI may be too 
speculative to be useful.  

Some AI experts believe in the possibility of “artificial general 
intelligence” (or “general AI”), referring to AI with generalizable powers 
of perception and reasoning that rival those of humans.5  However, it is 
more useful to think about AI as a set of extant, albeit fast-developing, 
technologies centered on machine learning. In this Article, I focus on AI 

 

 1.  RICHARD SUSSKIND, TOMORROW’S LAWYERS: AN INTRODUCTION TO YOUR FUTURE 55 (2d 

ed. 2017). 

 2. Id. 

 3. For an overview of the field, see KEVIN D. ASHLEY, ARTIFICIAL INTELLIGENCE AND LEGAL 

ANALYTICS: NEW TOOLS FOR LAW PRACTICE IN THE DIGITAL AGE (2017). The field’s most prominent 

journal is Artificial Intelligence and Law, and its major conferences include the International Conference 

on Artificial Intelligence and Law (ICAIL) and the JURIX International Conference on Legal Knowledge 

and Information Systems. 

 4. For a nontechnical overview of neural networks in this article. See infra Part II.C.3. 

 5. See generally, e.g., Sam S. Adams et al., MAPPING THE LANDSCAPE OF HUMAN-LEVEL 

ARTIFICIAL GENERAL INTELLIGENCE, AI MAGAZINE (Spring 2012). 
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as a technology rather than as an idea. In other words, this Article focuses 
on AI as it exists now and is likely to exist in the medium-term future. 

First, I provide an overview of what AI is and what it can do. By 
reaching a rough understanding of the current and foreseeable state of AI 
technologies, we can better evaluate how AI is likely or unlikely to 
transform the practice of law. 

In the sections that follow, Part A explains the contours of the term 
“artificial intelligence.” Part B briefly discusses symbolic (or classical) 
AI. Part C explains the various branches of machine learning. Finally, Part 
D discusses natural language processing, which is the branch of AI that 
involves processing and understanding human language (speech and text) 
and uses both symbolic and machine-learning methods. 

A. What is AI? 

While there is no generally accepted definition of AI, AI traditionally 
focuses on the construction of rational agents: computer agents (or 
software programs) that work to achieve the best expected outcome 
according to a performance measure.6 AI agents often perform one or 
more of the following activities7: 

- Search (exploring possibilities, such as sequences of moves in a chess 

game or routes in a wayfinding application, that would help the agent 

reach its goal) 

- Planning and scheduling (placing steps toward the agent’s goal in an 

optimal order, given constraints) 

- Perception (observing the agent’s environment and using 

environmental cues to update the agent’s internal state) 

- Knowledge representation (encoding external knowledge in a 

computer-usable form so the agent can use it to reason and make 

decisions) 

This Article uses the following, perhaps overinclusive, definition of AI: 
AI software performs functions associated with the human mind. These 
functions commonly include perception, pattern recognition, 
classification, reasoning, and language processing. AI software also 
commonly possesses certain other characteristics: it is often autonomous 
(that is, able to control itself), goal-directed, and capable of learning and 
self-improvement. Further, AI software sometimes runs on specialized 
 

 6. See STUART J. RUSSELL & PETER NORVIG, ARTIFICIAL INTELLIGENCE: A MODERN APPROACH 

3–4 (4th ed. 2021) (characterizing the foundations of AI as computer programs that are expected to 

achieve the best outcome in as they “operate autonomously, perceive their environment, persist over a 

prolonged period, adapt to change, and create and pursue goals.”). 

 7. The activities listed here are a broad, non-exclusive summary by the author of the main 

categories in which AI functions today. Russell and Norvig’s text provides the classic overview of AI 

functions. See id. 
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hardware, such as a robot or self-driving car, that allows the software to 
learn from and interact with the external physical environment. 

This Article does not equate AI with machine learning. “Machine 
learning is a subfield of AI that studies the ability to improve performance 
based on experience.”8 Though machine learning currently dominates AI 
research and practice, conflating the two overlooks systems that have 
traditionally been considered AI but do not improve themselves through 
experience.9 

Furthermore there is an important distinction between narrow and 
general AI. The term narrow AI refers to AI systems that perform specific 
tasks in particular domains, such as systems that play chess or diagnose 
blood infections.10 General AI, however, refers to software that can learn 
to perform virtually any task across a variety of domains.11 This Article 
focuses exclusively on narrow AI because general AI does not yet exist 
and is not likely to exist in the near future. Though some AI experts 
believe that general AI is possible, few seem to believe that we are on the 
cusp of developing such technology.12 For this Article’s purposes—
evaluating how AI is likely (or not) to transform legal practice in the 
medium-term future—it is more useful to think of AI in terms of software 
that can perform specific tasks. 

Finally, to contextualize the meaning of AI, it is helpful to ask: what 
sort of tasks can AI systems perform? AI systems and technologies in use 
today perform the following tasks: 

- Image recognition and description (including facial recognition, 

medical image diagnosis, and automatic caption generation) 

- Robotics (including autonomous vehicles and autonomous weapons) 

- Medicine and public health (including drug discovery, drug interaction 

prediction, and infectious disease modeling) 

- Recommendation systems and personalization (including product and 

content recommendations, personalized news, and ad targeting) 

- Natural language processing (including speech recognition, virtual 

assistants, machine translation, text generation, and sentiment 

 

 8. Id. at 1 n.1. 

             9.  Akif Celepcikay & Yetkin Yildrim, Artificial Intelligence and Machine Learning 
Applications in Education, 2 EURASIAN J. HIGHER ED. 1, 2 (2021) (“For example, symbolic logic, expert 

systems, and knowledge graphs are AI but they are not machine learning.”). 
 10. See MELANIE MITCHELL, ARTIFICIAL INTELLIGENCE: A GUIDE FOR THINKING HUMANS 46 

(2019). 

 11. Mitchell describes “general AI” as “the AI that we see in movies, that can do most everything 

we humans can do, and possibly much more.” Id. 

 12. For a range of expert opinions on the matter, see MARTIN FORD, ARCHITECTS OF 

INTELLIGENCE: THE TRUTH ABOUT AI FROM THE PEOPLE BUILDING IT (2018) (containing interviews with 

over a dozen of “the world’s most prominent AI research scientists and entrepreneurs,” as well as “deep 

learning agnostics”). See also JOHN BROCKMAN, POSSIBLE MINDS: TWENTY-FIVE WAYS OF LOOKING AT 

AI (2020) (collecting essays from leaders in the AI field). 
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analysis) 

- Search and information retrieval (including document- and image-

based search queries and question answering systems) 

- Logistics and planning (including wayfinding and resource-

deployment programs) 

- Predictive analytics (including credit and insurance decisions, sales 

forecasting, and securities trading)13 

B. Symbolic (classical) AI 

Symbolic or classical AI—sometimes called “Good Old-Fashioned AI 
(GOFAI)”—refers to AI software in which concepts are represented as 
“symbols” and then manipulated by a software program.14 Symbolic AI 
is characterized by practices such as grouping and structuring concepts 
into data structures or knowledge graphs that computationally describe 
their relationships.15 Symbolic AI programs manipulate these data 
structures with if-then rules and other algorithms. Many symbolic AI 
programs are so-called expert systems that attempt to encode the 
knowledge of domain experts (e.g., cardiologists) and build data 
structures and rule trees that use that encoded knowledge to make 
decisions simulating those an expert would make.16  

Though symbolic AI has largely fallen out of favor as the field turned 
its focus to machine learning,  the subfield accomplished many 
achievements. Here are a few examples: 

- Chess programs using rule trees and other symbolic AI techniques 

were able to defeat grandmasters.17 

- The U.S. military’s DART (Dynamic Analysis and Replanning Tool) 

program assisted with logistics planning and force deployment in the 

 

           13.  See RUSSELL & NORVIG, supra note 6, at 27-30. 

 14. MARGARET A. BODEN, ARTIFICIAL INTELLIGENCE: A VERY SHORT INTRODUCTION 5 (2018). 

See also Giuseppe Futia & Antonio Vetrò, On the Integration of Knowledge Graphs into Deep Learning 

Models for a More Comprehensible AI—Three Challenges for Future Research, 11 INFORMATION 122, 

125-26 (2020) (contrasting GOFAI with the “connectionist approach” that relies on networking principles 

and optimization techniques); Robert Hoehndorf & Núria Queralt-Rosinach, Data Science and symbolic 

AI: Synergies, challenges and opportunities, 1 DATA SCI. 27, 29 (2017) (distinguishing data science and 

symbolic AI). 

 15.  Hoehndorf & Queralt-Rosinach, supra note 7, at 29.   

 16. In expert systems, “[p]roblem solving expertise is encoded, usually as a set of rules, and then 

some mechanical inference process manipulates this ‘knowledge base’ to solve problems in the domain 

by simulating the methods which the original expert might have used himself.” Marek Sergot, A Brief 

Introduction to Logic Programming and Its Applications in Law 35, in COMPUTER POWER AND LEGAL 

LANGUAGE: THE USE OF COMPUTATIONAL LINGUISTICS, ARTIFICIAL INTELLIGENCE, AND EXPERT 

SYSTEMS IN THE LAW (Charles Walter ed., 1988). 

 17. See, e.g., KARSTEN MÜLLER & JONATHAN SCHAEFFER, MAN VS. MACHINE: CHALLENGING 

HUMAN SUPREMACY IN CHESS (2018); Troy D. Kelley & Lyle N. Long, Deep Blue Cannot Play Checkers: 

The Need for Generalized Intelligence for Mobile Robots, J. Robotics, 2010. 
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Gulf War, helping the government save millions of dollars.18 

- The system MYCIN used around 600 expert-defined rules to identify 

blood diseases.19 

None of these programs relied on the machine learning technology that 
underpins most current AI applications and research, however. 

Most existing legal AI systems are expert systems, which use symbolic 
AI techniques such as if-then rules.20 However, the AI research and 
engineering community has largely moved on from symbolic AI to 
machine learning. Symbolic AI programs tend to be brittle since they 
operate according to hand-programmed rules that process drastically 
simplified representations of reality. Additionally, evaluating each rule’s 
validity and programming them into a system is an expensive, time-
consuming, and error-prone task that requires extensive input from 
domain experts. Even if these resource limitations can be overcome, it is 
often impossible to distill expert knowledge into robust, workable rules, 
especially in domains such as law that are nondeterministic and dependent 
on the exercise of reasoned judgment. 

This Article ultimately explains how these obstacles have hampered 
efforts to develop AI programs in the legal sector. 

C. Machine Learning and “Deep Learning” 

The term machine learning refers to software capable of improving 

itself automatically as it learns from data.21 Most contemporary machine 
learning tools can be thought of as predictive models or prediction-
making machines. By observing and detecting patterns in large quantities 
of data, these machines learn to make predictions about unseen data.22 

 

 18. See U.S. DEPT. OF COMMERCE, CRITICAL TECHNOLOGY ASSESSMENT OF THE U.S. ARTIFICIAL 

INTELLIGENCE SECTOR xi (1994) (recapping how DART “solved the logistical nightmare of moving the 

U.S. military assets to the Saudi Desert. The application was developed to schedule the transportation of 

all U.S. personnel and materials such as vehicles, food, and ammunition from Europe to Saudi Arabia. 

This one application alone reportedly more than offset all the money the Advanced Research Projects 

Agency had funneled into Al research in the last 30 years.”). 

 19. See MITCHELL, supra note 10, at 40–41. 

 20. For example, Kevin Ashley’s influential HYPO program is essentially an expert system that 

combined a database of encoded legal cases with the domain knowledge of a lawyer familiar with trade 

secrets law. See generally KEVIN D. ASHLEY, MODELING LEGAL ARGUMENT: REASONING WITH CASES 

AND HYPOTHETICALS (1990). HYPO is discussed in Part III.B. 

 21. See, e.g., Anastassia Lauterbach, Introduction to Artificial Intelligence and Machine Learning 

33, in THE LAW OF ARTIFICIAL INTELLIGENCE AND SMART MACHINES (Theodore F. Claypoole ed., 2019). 

 22. Another important type of machine-learning program relies on reinforcement learning. See, 

e.g., MITCHELL, supra note 10, at 133–44. Reinforcement learning agents learn by trial and error which 

actions bring them closer to their goals. Id. at 139-140. Examples of reinforcement learning include a 

robot teaching itself to walk, or software teaching itself to play Atari games. Reinforcement learning is 

not discussed in this article because it is not yet clear if it could be fruitfully used to solve problems in the 

legal domain. 
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Machine learning tools are trained on a set of examples, each of which 
is typically paired with a label. For example, a spam-detection tool would 
be trained on a set of emails, each of which has been assigned a label of 
“spam” or “not-spam.” Most machine learning tools use supervised 
learning, in which the training examples are paired with human-assigned 
labels. Other tools use unsupervised learning, in which the software 
attempts to detect its own patterns in the data without recourse to human-
assigned labels.23 

Below, Subsection 1 discusses supervised machine learning, while 
Subsection 2 discusses unsupervised machine learning. Subsection 3 
delves into two machine-learning subfields that can involve either 
supervised or unsupervised learning: deep learning and natural language 
processing. 

The purpose of these discussions is twofold. First, I anticipate that these 
ideas will be largely unfamiliar to many of this Article’s readers. For those 
readers, I hope to provide a mostly nontechnical and math-free overview 
of these core AI technologies. Second, to understand how AI might be 
fruitfully applied in the legal domain, it is important to have an 
approximate understanding of how the various AI technologies work. 
With such knowledge, we can ground discussions about possible legal 
applications of AI in the context of near-term technological possibilities 
rather than long-term speculation. 

1. Supervised Machine Learning 

Most modern machine learning consists of supervised learning.24 In 
supervised learning, software learns from a set of data samples in which 
each sample (input) is associated with a label (output).25 Through 
exposure to many sample-label pairs, the software learns a complex 
mathematical function that shows a relationship between the samples and 
labels. This process is called training the machine-learning model. A 
trained model can then use the function it has learned to guess the 
appropriate label for new, unseen samples for which it lacks human-
assigned labels.26 

This is best illustrated by example. What follows is a description of two 
standard examples of supervised machine learning: a spam classifier and 
a house-price estimator. 

 

           23.  For an overview of the various types of machine learning, see ANKUR A. PATEL, HANDS-ON 

UNSUPERVISED LEARNING USING PYTHON: HOW TO BUILD APPLIED MACHINE LEARNING SOLUTIONS 

FROM UNLABELED DATA 3–26 (2019). 
 24. Aidan Wilson, A Brief Introduction to Supervised Learning, TOWARDS DATA SCIENCE (Sept. 

2, 2019), https://towardsdatascience.com/a-brief-introduction-to-supervised-learning-54a3e3932590. 

          25.   PATEL, supra note 23, at 3-4. 

          26.   Id. at 4.  
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i. Spam classifier 

Many of the emails transmitted on the Internet are unwanted spam. 
Every email provider uses a system to automatically detect whether 
incoming mail is spam so that spam emails can be directed to a spam 
folder and ignored. Modern email providers use machine learning to 
perform this task. 

First, consider a non-machine-learning approach to spam detection. We 
could design a program that uses various explicit rules to detect spam. For 
example, we could check to see whether an incoming email uses more 
than four exclamation points and, if so, mark it as spam. By studying 
examples of spam emails, we could devise hundreds or thousands of 
similar rules. Such manually crafted rules are the hallmark of symbolic 
AI systems. 

Alternatively, we can use machine learning to automatically detect and 
weigh the features (variables) associated with spam emails. As it learns 
these features, the machine learning software develops a complex 
mathematical model mapping the features to a classification of spam or 
non-spam. The trained software can then use this model to make a 
prediction about the legitimacy of incoming emails that it has not yet seen. 

Our spam-detection system is an example of a binary classification 
program: its goal is to classify unseen samples as one of two options, 
spam or non-spam. We can also imagine a multiclass classification 
program, such as a program that classifies photos as displaying a dog, cat, 

horse, or none-of-the-above. 
Many current applications of machine learning involve supervised-

learning systems performing classification tasks, so the spam detector 
example should be the first thing that comes to mind when you think about 
AI and machine learning. Here are some other examples of classification 
problems: 

- Given a newspaper article, predict its topic from a set of topics such as 

sports or politics. 

- Given a movie review, predict its sentiment as positive or negative. 

- Given a handwritten digit, predict whether the number written is 0, 1, 

2, etc. 

ii. House Price Predictors 

Classification problems such as spam detection involve assigning data 
samples to various “buckets” (output labels) such as spam and non-spam. 
This is essentially a qualitative task, although the machine learning 
classifier could output either a binary answer (e.g., 1 for spam, 0 for non-
spam) or a set of probabilities (e.g., 0.7 for spam and 0.3 for non-spam, 
representing a prediction with 70% confidence that the email is spam). 

8
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Predicting house prices in a district involves a different, quantitative 
task: predicting a continuous output variable rather than a discrete output 
variable. Prices are continuous, theoretically ranging from $0.01 to 
infinity. The problem of predicting a continuous output variable given a 
set of input variables is called a regression problem. Supervised machine 
learning tasks involve either classification or regression, and many 
problems can be modeled as either. 

A house-price predictor works as follows. The machine learning model 
is trained with samples consisting of sets of variable-value pairs such as 
the following. Each sample represents one housing district: 

 
 

District 1  

Longitude -122.23 

Latitude 37.86 

Housing median age 41 

Total rooms 880 

Total bedrooms 129 

 
The machine learning model is trained by processing thousands of 

samples. Each sample is paired with a label representing  the variable 
predicted—in this case, the median house price in each district. As shown 
in the table above, each sample has a number of features (variables) that 

may serve as clues to the target output. The model learns the relationship 
between these features and the median price. Once trained, the model can 
take an unlabeled sample, such as information about a district, and 
generate a prediction of that median house price. 

Other examples of regression problems include: 

- Given the features of a car, estimate its price. 

- Given a person’s demographic information, estimate the person’s 

income. 

- Given a college applicant’s GPA and standardized test scores, estimate 

the student’s probability of being admitted to a top university. 

- Given historical weather data, estimate tomorrow’s temperature. 

Note that in each of these examples, the output value is continuous rather 
than discrete. 

2. Unsupervised Machine Learning 

In the spam-detection and house-price-estimator examples above, the 
models were trained using labeled data. Each input sample was paired 
with a target output (or label), and the machine-learning model learned 
the relationship between the samples’ features and the label. In the real 

9
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world, most data is unlabeled, and the problem of assigning labels to tens 
of thousands of data samples is often laborious, error-prone, and 
expensive. 

Unsupervised learning algorithms attempt to find relationships 
between features in a set of unlabeled input samples. Such algorithms 
essentially recognize patterns in the input data without having any 
particular goal (target output) in mind. 

Here are some examples of unsupervised learning problems: 

- Given a set of credit-card transactions with associated features such as 

price, customer address, and transaction address, detect outlier 

transactions that should be flagged as potentially fraudulent. 

- Given a set of social media users, group the users into separate clusters 

based on what ads they are likely to click on. Then, target a new ad to 

all users in a particular cluster. 

Unsupervised learning is growing in importance.27 Further, it continues 
to increase its contributions to AI through the advent of semisupervised 
learning. In semisupervised learning, unsupervised learning is used to 
generate the labeled data needed for a supervised learning task. Consider 
the following example: Given a set of Amazon shoppers, group the 
shoppers into separate clusters based on what they are likely to buy. After 
examining the results, note that one of the clusters tends to buy cat litter 
and scratching posts. Then, manually assign the label “cat owner” to each 
of these shoppers. Amazon now has a set of labeled data that it can use to 

predict whether a user is a cat owner, and it can use this information to 
target ads to these users in the future. 

3. Neural Networks and the Deep Learning Revolution 

The most important development in the past decade of AI research has 
been the onset of deep learning, which refers to multilayered neural 
networks. Neural networks derive patterns from input data that allow the 
network to map similar but unseen data to certain outputs. 

Neural networks operate by passing each sample of input data through 
various layers, each of which transforms the data in a way that makes it 
easier to associate the sample with an appropriate output.28 When the 
transformed sample emerges from a pipeline of internal (hidden) layers, 
the final (output) layer associates the transformed sample with a predicted 

 

          27.   See, e.g., Ana Mezic, Why Unsupervised Machine Learning is the Future of Cybersecurity, 
TECHNATIVE (Sept. 9, 2021), https://technative.io/why-unsupervised-machine-learning-is-the-future-of-

cybersecurity/; Thorsten Wuest et al., Machine learning in manufacturing: advantages, challenges, and 

applications, 2016 PROD. & MFG. RSCH 23, at 33 (discussing the growing importance of unsupervised 
learning and the research opportunities in the field). 

 28. For an overview, see MITCHELL, supra note 10, at 70–80. 
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value. If the predicted value does not match the sample’s true (human-
assigned) value, the model subtly adjusts itself to reduce similar mistakes 
in the future. Once trained, a successful model can assign appropriate 
labels to unseen data. 

Most neural networks are engaged in supervised learning, and the most 
common supervised learning task is, as previously discussed, 
classification. Consider a neural network designed to identify images of 
handwritten digits. Each input to the model (i.e., each sample) would be 
an image of the digit to be classified. Before the images are fed to the 
model, they must be converted to numerical matrices of equal size. For 
example, a greyscale image could be represented by a 255 x 255 grid in 
which each slot contains a numeric value representing the darkness of a 
particular pixel. Each pixel’s darkness can be thought of as a feature of 
the image. The neural network uses these features as clues bearing some 
relation to the image’s output label. 

After passing to the neural network, the image undergoes a 
transformation in which each layer’s units multiply feature values by 
randomized weights that accentuate or downplay the features. At the end 
of the network pipeline, the image’s transformed data is used to predict 
the output label. For example, the model might output an array of ten 
numbers, with each number representing the chance that the image is a 
particular digit. If slot one of the output array represents the digit “zero,”  
the output array [0 0 1 0 0 0 0 0 0 0 0] might signify a guess that the 
handwritten digit is the number two. Alternatively, the output array might 
show probabilities rather than “yes/no” answers. Thus, the array [0 0 .5 0 
0 0 0 .5 0 0 0] might signify a 50% probability that the digit is the number 
two and a 50% probability that the digit is the number seven. 

Suppose that on its first pass through the image data, the network 
incorrectly classifies a handwritten five as the digit eight. At the output 
stage, the network would compare its guess of eight to the true label of 
five, determine that it erred, and slightly adjust each layer’s weights to 
reduce the likelihood of repeating that error. Thus, the model learns to 
make better predictions in the future. 

D. Natural Language Processing 

Computers fundamentally work by processing numbers, not words. 
Since the onset of AI research, AI inventors have worked to create 
machines that can bridge the human-computer communication gap and 
work with natural human language. This branch of AI is called natural 
language processing (“NLP”). NLP’s fundamental status in AI is 
illustrated by the famous “Turing test,” derived from Alan Turing’s 
proposal that a machine is intelligent if it can answer questions so well as 
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to fool a human questioner into believing that the machine is human.29 
Traditional symbolic-AI approaches to NLP work by processing input 

language according to fixed rules.30 At the simplest level, a regular 
expression can parse human text into different components which can 
then be used as variables in algorithms. For example, the regular 
expression ([A-Z][a-z]+) could be used to search a document for 
character strings consisting of one capital letter followed by one or more 
lowercase letters. This could serve as a primitive way to search for proper 
nouns. Of course, such a method is deeply flawed, as it would treat every 
capitalized sentence-starting word as a proper noun, and it would not 
recognize multiple-word proper nouns such as “Grand Canyon” as 
constituting a single proper noun as opposed to two separate proper 
nouns. Regardless, this example illustrates how a computer using 
symbolic AI techniques can learn to parse text strings into components 
with which the computer can reason. 

As a somewhat more sophisticated example, I developed a simple 
symbolic-AI NLP program that can solve basic estates-in-land problems 
in property law. First-year property students learn to parse deeds into 
present and future property interests. For example, a deed granting land 
“to Jenny and her heirs for so long as the land is used as a school, then to 
Bob” would be parsed as follows: 

- Jenny has a fee simple determinable; and  

- Bob has an executory interest that becomes possessory when the land 

is no longer used as a school. 

The language in deeds is often predictable, making such problems 
amenable to computation. Here is an example of the program in action: 

 
Input: 

Richard to Ted so long as the land is used for educational purposes; 
and if it is not used for educational purposes, then to Ryan. 

 
Output: 

Grant: Richard to Ted so long as the land is used for educational 
purposes; and if it is not used for educational purposes, then to 
Ryan. 

 
Analysis: Richard granted a fee simple subject to an executory 
limitation to Ted. Ryan holds a future interest which will become 

 

 29. See MITCHELL, supra note 10, at 49–52 (2019). 

 30. For a comprehensive overview of NLP concepts that predates the deep learning revolution, see 

generally DANIEL S. JURAFSKY & JAMES H. MARTIN, SPEECH AND LANGUAGE PROCESSING: AN 

INTRODUCTION TO NATURAL LANGUAGE PROCESSING, COMPUTATIONAL LINGUISTICS, AND SPEECH 

RECOGNITION (2000). 
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possessory if the property is not used for educational purposes. 
 
 Grantor: Richard 
 
 Grantee: Ted 
 

Negative condition: The property must be used for educational 
purposes. 

 
 Future interest holder: Ryan 
 
The program would work by using advanced regular expressions to 

search for grammatical patterns in the deed language. It parses the deed 
language into components that fill variables such as grantor, grantee, life 
estate holder, and condition. It then uses these variables to create and fill 
templates such as: {grantor} granted a fee simple 

subject to an executory limitation to {grantee}. 
Symbolic AI techniques, such as regular-expression-based grammar 

parsers, can produce satisfactory results for many tasks. However, since 
language is complex and unpredictable, and requires so much background 
knowledge to understand, there is a ceiling on programmers’ ability to 
process language with parsing algorithms, database lookups, and if-then 
rules. Such tools tend to exhibit the symbolic-AI shortcoming of 
brittleness. They are also often not portable across different speech 
domains; for example, a program designed to process news articles is 
likely unsuccessful at parsing medical literature or children’s speech, and 
a program designed to parse English is helpless when confronted with 
Chinese. 

The NLP community has therefore joined the rest of the AI community 
in reducing the role of many symbolic AI techniques in favor of deep 
learning (multilayered neural network) technologies. This application led 
to unprecedented successes on many NLP tasks. For example, speech 
recognition is far better than ever before: digital assistants such as 
Amazon’s Alexa and Apple’s Siri can decode most human speech into 
text strings, which prompt the software to perform certain tasks, such as 
launching applications, sending messages, and looking up answers to 
basic factual questions (e.g., “What’s the weather like today?”; “Who won 
the Super Bowl?”; etc.). AI expert Melanie Mitchell considers near-
human-level speech recognition to be the greatest achievement of AI to 
date.31 

Advances in speech recognition have been made possible by programs 

 

 31. MITCHELL, supra note 10, at 180. 
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that combine deep neural networks, each of which specializes in a narrow 
task. For instance, one neural network might map input sounds to human 
phonemes, another might map those phonemes to words, and yet another 
might map groups of words into phrases.32 

Another significant achievement of deep neural networks for NLP is 
machine translation. Contemporary machine translation systems such as 
Google Translate are far better than their older, symbolic-AI equivalents. 
Before the advent of deep-learning translation methods, translation 
systems worked by parsing an input sentence into phrases, then 
probabilistically matching those phrases to equivalent phrases in the 
target language.33 Now, translations are typically performed with encoder 
and decoder neural networks. The encoder network learns a mathematical 
representation of the input text, and the decoder network learns to map 
the encoder network’s representation back to output text in a different 
language.34 

Another notable advance in NLP is the development of image-
captioning systems that attempt to describe an image’s content. Many of 
these systems use techniques similar to those used in deep-learning 
machine translation approaches, except the encoder network maps an 
input image to a mathematical representation instead of mapping an input 
text to a mathematical representation.35 

Yet another recent advance is text-generation.36 Text-generation 
systems such as Google’s Smart Reply can perform functions such as 
helping the user complete sentences in emails. With Smart Reply, for 
example, as you begin to type “To Whom” at the top of an email, the 
words “it May Concern” may appear in grey after your cursor, and you 
can then press the tab key to accept the suggestion and include it in your 
email. Text-generation systems work by learning to perform the following 
task: given a sequence of text, predict what text will likely come next. 
These systems may exhibit a type of creativity by introducing randomness 
to their predictions. 

These significant advances in natural language processing should not 
obscure the limits of what deep neural networks can do, however. Neural 
networks create highly complex mathematical functions that map input 
data to output data. However, neural networks cannot understand 

 

 32. Id. 

 33. Id. at 199. 

 34. Id. at 199–201. 

 35. See generally, e.g., I. Hrga and M. Ivašić-Kos, Deep Image Captioning: An Overview, at 995-

1000 in 2019 42nd International Convention on Information and Communication Technology, Electronics 

and Microelectronics (MIPRO), 995 (2019).  

 36.  See John Seabrook, The Next Word: Where Will Predictive Text Take Us?, NEW YORKER 

(Oct. 14, 2019), https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-

the-new-yorker. 
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language in a human sense because they lack background knowledge 
about the world, and human communication often relies on implicit 
messages that a computer cannot detect.37 Computers are unlikely to 
overcome these obstacles anytime soon.38 

E. Problem Definition in Machine Learning 

It is tempting to marvel at the accomplishments of machine learning 
systems and imagine that they can solve any kind of problem. However, 
machine learning is not appropriate for every task, so it is important to 
consider whether a problem can be defined in such a way as to be 
amenable to a machine learning approach. For example, when creating a 
program to solve a particular problem, one must consider what its inputs 
and outputs would be. 

When thinking about whether a problem is amenable to a supervised 
machine learning approach, consider the following: 

- Can you think of the task in terms of mapping inputs (such as pictures) 

to outputs (such as “dogs” or “cats”)? 

- Do you have thousands (or more) of input samples that are already 

labeled with the relevant output so that you can train the system? 

  

 Conversely, when thinking about whether a problem is amenable to 
an unsupervised machine learning approach, consider the following: 
 

- Given a set of data samples, can you think of some reason to look for 

hidden patterns in the data (especially to separate the samples into 

groups or to detect anomalies)? 

Engaging in problem specification of this sort is an essential step to 
determine the short- and medium-term practical applications of AI. 

III. WHAT TO EXPECT OF LAW AND AI 

Law is not particularly amenable to computation. As Kevin Ashley has 
acknowledged, “legal rules tend to be incomplete, logically and 
semantically ambiguous, sometimes inconsistent, and frequently hard to 
find or even to identify. [Additionally,] the law is adversarial; legal 
problems frequently have no one right answer.”39 Despite these 

difficulties, AI techniques can assist with many specialized legal tasks. 

 

 37. See, e.g., Raymond J. Moody and Gerald DeJong, Learning schemata for natural language 

processing 681-87, INT’L JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, (1985), 

https://www.ijcai.org/Proceedings/85-1/Papers/131.pdf. 

 38. See MITCHELL, supra note 10, at 180. 

 39. ASHLEY, supra note 20, at 2. 
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Section A of this Part first describes obstacles to developing legal AI 
systems. Section B delves specifically into efforts to develop legal 
reasoning systems and explains how and why such efforts have fallen 
short. Section C describes promising applications of AI concepts to law, 
including advanced legal information retrieval systems and collaborative 
expert systems that can assist, rather than replace, a legal decisionmaker. 

A. Obstacles to Building AI-Driven Legal Applications 

Problems amenable to computer automation usually match fixed, yes-
or-no inputs with certain outputs in a predictable way. Some legal issues 
are amenable to this sort of problem structuring. For example, traffic laws 
are typically “bright-line rules” that motorists either do or do not violate, 
leaving zero room for judicial discretion. Perhaps unsurprisingly,  we see 
enforcement mechanisms such as red-light cameras and speed cameras 
that operate as fully automated law enforcement systems.  These systems 
are monolithic programs that replace, within a limited domain, the role 
previously played by a police officer, court clerk, and judge. 

However, most legal problems are not as simple as speeding tickets. 
For instance, the principle underlying red-light cameras cannot be 
extended to reckless driving because what constitutes “recklessness”  is a 
fact-intensive inquiry that calls for the reasoned application of a vague 
legal standard. Even if a program could be developed to make a prediction 
about whether a judge would rule that certain driving activities are 
“reckless,” due process considerations would limit the utility of such a 
program.40 A reckless driving conviction has significant consequences for 
the driver, and I would not trust an automated system to dole out those 
consequences without having a deep understanding of how the system 
works. We need reason to believe that the system’s decisions accurately 
reflect decisions that would be made by a human judge reviewing the 
same facts and law. A workable system that meets that criterion is 
prohibitively difficult to conceive, plan, execute, and test. 

The following subsections briefly discuss five obstacles to applying AI 
in the legal domain: the problems of natural language understanding, 
vagueness, fact representation, explainability, and task generalization. 

1. The Natural Language Understanding Problem 

Legal reasoning frequently involves interpreting texts. Computers can 
easily identify statistical relationships among words and phrases, but they 

 

 40. See, e.g., Han-Wei Liu et al., Beyond State v Loomis: Artificial intelligence, government 

algorithmization and accountability, 27 INT’L J. L. INFO. TECH. 122 (2019); Danielle Keats Citron and 

Frank Pasquale, The scored society: Due process for automated predictions, 2014 WASH. L. REV. 89. 
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cannot read or understand text in a way that approximates what lawyers 
do when they read a judicial opinion. Given two judicial opinions, a 
program might detect similarities and differences between the opinions, 
noticing that the opinions cite some of the same cases, are of similar 
length, or were written by the same judge. However, the program will not 
have any sense of which similarities and differences are relevant.41 
Identifying relevant similarities and differences between cases is a critical 
aspect of legal reasoning in a common-law system. 

Improvements in natural language processing have led to impressive 
feats, such as the development of question-answering systems and virtual 
assistants, but no computer can “read” in the sense that even a novice 
human reader can.42 Human readers bring to their task background 
knowledge, “common sense,” and an ability to make inferences that go 
beyond the information explicitly stated in the text.43 The obstacles to 
making these skills computable are unlikely to be overcome anytime 
soon. Any AI-related predictions that assume away such problems 
amount to speculation. 

Legal reasoning programs designed to date operate on manually written 
representations of legal texts rather than on the texts themselves. Given 
the fluidity of legal concepts and legal reasoning, however, it is difficult 
or impossible to codify the contents of most legal cases or fact situations 
in a reproducible way—that is, in such a way that a number of legal 
experts would look at the same judicial opinion or fact situation and 
reliably encode its relevant information in an identical fashion. 

2. The Vagueness Problem 

Law is pervaded by vagueness. A concept or term is vague if its 
boundaries are not easily defined, so it is often difficult or impossible to 
objectively determine whether the term encompasses a particular fact 
situation.44 For example, while the term “reasonable” is pervasive in law, 
it lacks a fixed meaning that can be computationally encoded. Whether a 
defendant’s conduct is reasonable in a negligence case depends on an 
unknown, and potentially unknowable, number of variables, including the 

 

 41.  See MITCHELL, supra note 10, at 105 (noting that a machine learning program learns what it 

observes in the data rather than what a human might observe, meaning that it will learn statistical 

associations in data even if a human would judge them to be irrelevant to the task). 

 42. See id. at 222–28. 

 43. Id. at 224. 

 44. See generally Ryan McCarl, Incoherent and Indefensible: An Interdisciplinary Critique of the 

Supreme Court’s “Void-for-Vagueness” Doctrine, 42 HASTINGS CONST. L. Q. 73, 82–88 (2014) 

(discussing linguistic vagueness and the law). Logician Willard V.O. Quine wrote that many words are 

“best depicted as forming not a neatly bounded class but a distribution about a central norm.” WILLARD 

V.O. QUINE, WORD AND OBJECT 77 (2d. ed. 2013) (emphasis in original). 
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nuances of what actions the defendant took and failed to take as well as 
the factfinder’s view of what a reasonable person would do in similar 
circumstances. The same goes for concepts such as “good faith.” 

Because vagueness is so common in the law,45 it is difficult or 
impossible to robustly model many legal rules and principles that can 
operate on computerized representations of legal cases or fact situations. 
These problems are exacerbated by the fact that legal rules change over 
time46 and are subject to unwritten exceptions. 

Attempts to encode a legal rule into an algorithm entail calcifying an 
essentially dynamic concept. In other words, efforts to make legal 
reasoning computable involve reducing vague concepts and rules into 
constants, variables, and formulas that can be computationally 
manipulated. Theoretically, such efforts can help clarify how legal rules 
operate. But if the goal is to build operational systems that play a role in 
deciding legal disputes, we should be wary of indulging our taste for 
“false clarity”47 by artificially simplifying the messy complexity of the 
law. 

3. The Problem of Eliciting, Representing, and Organizing Facts 

Relatedly, much of the law is driven by the discovery, characterization, 
and organization of facts, and there are inherent difficulties in making any 
fact-centric legal process computable. For example, in client or witness 
interviewing,  “[i]t is the responsibility of the human lawyer to elicit all 
the relevant facts . . .  [and] to decide what is important among all the 
information supplied by the client.”48 It is difficult to conceive of a 
computer program that could perform these functions.  There is also the 
more fundamental problem of knowledge representation, a strand of AI 
that considers how to represent facts to a computer in the first place to 
enable the computer to perform logical operations with those facts. 

A related problem is that AI programs lack “common sense”: an 
understanding of basic concepts such as the fact that a physical entity can 
only be in one place at a time. Rules such as that must usually be manually 
encoded. Expensive, decades-long efforts to encode such rules have been 
mostly fruitless.49 

 

 45. This problem is often discussed in terms of the “open-textured” nature of legal concepts. Legal 

concepts “cannot be defined by necessary and sufficient conditions which are universally valid over their 

domain of application.” Kevin D. Ashley & Edwina L. Rissland, Law, learning, and representation, 150 

ARTIFICIAL INTELLIGENCE 17, 18 (2003) (discussing H.L.A. Hart, Positivism and the Separation of Laws 

and Morals, 71 HARV. L. REV. 593 (1983)). 

 46. See id. at 26. 

 47. KEES VAN DEEMTER, NOT EXACTLY: IN PRAISE OF VAGUENESS 6 (2010). 

 48. URI J. SCHILD, EXPERT SYSTEMS AND CASE LAW 117 (1992) (emphasis in original). 

 49. See, e.g., MITCHELL, supra note 10, at 248–50 (describing the history of similar efforts). 

18

University of Cincinnati Law Review, Vol. 90, Iss. 3 [2022], Art. 5

https://scholarship.law.uc.edu/uclr/vol90/iss3/5



2022] LIMITS OF LAW AND AI 941 

The need to create appropriate data structures to store facts and the 
relationships between facts is a major obstacle to the development of 
useful expert systems in any domain, particularly in law. And “[e]ven if 
we assume an enormously large knowledge-base there is a certain 
problem no system can cope with: We could never guarantee that yet 
another fact, so far absent and irrelevant to all previous cases[,] may not 
take an all-important significance in the case at hand.”50 In other words, 
because judicial precedents in the common-law system consist of legal 
decisions inextricably intertwined with the facts that gave rise to the 
dispute, there is no guarantee that the correct rule of decision for every 
new case can be identified in the corpus of past decisions. 

4. The Explainability Problem 

Deep learning systems and neural networks generally cannot provide 
reasons for their decisions. These systems are sometimes referred to as 
“black boxes” because while we can observe their inputs and outputs, we 
cannot meaningfully observe their internal decision-making processes or 
make sense of the predictive models they construct. The term 
explainability problem refers to the fact that even the most advanced 
deep-learning systems cannot presently explain how they reach decisions 
or make predictions.51 

The explainability problem poses a major obstacle to the development 
of AI technologies that can enhance or substitute for the work of lawyers 
and judges. A fundamental aspect of the legal system is the need to justify 
conclusions with reasons. Judges, for example, are ordinarily expected to 
write reasoned opinions in support of any significant decision. Reasoned 
opinions promote confidence that judicial decisions are principled and 
nonarbitrary. AI technologies cannot perform this all-important task.  

5. The Task-Specialization Problem 

Though there are judging-related tasks that are amenable to 
computation, one should keep in mind the difference between “narrow” 
and “general” AI discussed earlier in this Article.52 For the foreseeable 
future, all AI programs will be essentially specialist, designed to perform 
narrow tasks within a restricted domain. The act of presiding over 
disputes as a judge, however, involves a wide variety of tasks: deciding 
whether evidence is admissible, deciding what to do about breaches of 

 

 50. SCHILD, supra note 48 at 141. 

 51. See, e.g., Pantelis Linardatos et al., Explainable AI: A Review of Machine Learning 

Interpretability Methods, 23 ENTROPY 18 (2021). 

 52. See supra notes 10-11 and accompanying text. 
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procedure such as late filings, resolving an ambiguity in a statute or 
contract, and so on. We currently lack computer systems that can perform 
any of these judicial tasks on their own, and a computer program asked to 
substitute for a judge might need to perform all of them. 

B. Legal Reasoning Systems: A Dead End? 

For several decades, researchers have attempted to build legal 
reasoning software that automates (wholly or partly) the process of 
applying legal rules to new fact situations. This research has aimed to 
design systems that, given a user’s description of a fact situation, can 
select relevant judicial precedents and apply those precedents to (or 
distinguish them from) the fact situation.53 

In 1990, Kevin Ashley published Modeling Legal Argument, an 
important work in the field of law and AI. In that book, Ashley introduced 
HYPO, a legal reasoning program that Ashley described as follows: 

Hypo is a case-based reasoning program. It employs actual legal cases in 

its database to analyze problem disputes. Given a description of a legal 

dispute, the program compares the problem to relevant cases, selects the 

most analogous cases, and cites them in arguments. It draws simple factual 

analogies between the problem and precedents, distinguishes precedents, 

cites counterexamples, and poses hypothetical variations of the problem to 

spur an attorney to focus on important additional facts that would 

strengthen or weaken the arguments. In short, Hypo symbolically 

compares and contrasts the problem situation and cases in its case 

database.54 

 While HYPO is undoubtedly impressive, it had limitations that made it 
impractical for attorneys. These limitations remain relevant because they 
reflect still-unsolved problems with building legal reasoning software. 
For example, these limitations include:  

- Small case database in a limited domain. HYPO’s database 

contained only thirty cases relating to a single issue in tort law: 

whether a defendant misappropriated a trade secret. 

- Manual inputting and encoding of cases. The cases in HYPO’s 

database consisted not of plain-text judicial opinions but rather sets of 

variable-value pairs manually encoded by a lawyer or law student who 

had analyzed the judicial opinion and extracted salient facts. Any new 

cases had to be inputted manually for HYPO to consider them; there 

was no mechanism for automatically processing new opinions. HYPO 

was therefore blind to changes in the law, and any legal researcher who 

 

 53. See Kevin Ashley, Case-Based Reasoning 24, in INFORMATION TECHNOLOGY AND LAWYERS 

(Arno R. Lodder & Anja Oskamp eds. 2006). 

 54. ASHLEY, supra note 20, at 25. 
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used HYPO would have to supplement its work by performing manual 

searches for relevant cases outside its database—with a particular eye 

toward recently issued opinions. 

- Naïve method of weighing precedents. HYPO used simple counting 

to determine whether a precedent was analogous to the case at hand.55 

For example, a case sharing two analogous facts was deemed to be 

more on point than a case sharing only one analogous fact.56 

My point is not to criticize HYPO but rather show that its limitations 
illustrate unsolved and perhaps unsolvable problems in the field of Law 
and AI. Similar limitations pervade every attempt to create a program that 
can engage in legal reasoning.57 For example, whereas new cases can be 
automatically added to legal information retrieval systems such as Lexis 
and Westlaw, these cases must be manually analyzed and coded before 
being entered one-by-one into a legal reasoning system.58 That is so 
because programs cannot perform legal reasoning with raw text; they can 
only reason with (i.e., perform logical operations over) concepts that have 
been made meaningful to the computer through manual programming. 

C. Other Applications of AI in Law 

1. Legal Research, Information Retrieval, and e-Discovery 

Despite the limitations regarding AI’s application to the law discussed 
above, it is reasonable to expect that AI technologies will in some ways 
transform legal practice in the areas of legal information retrieval and e-
discovery. These changes will be enabled by advances in natural language 
processing, search technologies, and recommendation engines. 

i. Advances in Legal Research and Information Retrieval 

Information retrieval (IR) technologies have improved dramatically 
since the early days of Lexis and Westlaw. To understand why, it helps to 
think about cases and other legal materials as sets of features (variables), 
and search queries as attempts to retrieve materials that contain certain 

 

 55. See SCHILD, supra note 48 at 131 (criticizing HYPO on this point and noting that “[a] case 

with just one fact in common with the case at hand may sometimes be more convincing than a case with 

many such common dimensions”). 

 56. HYPO also used simple counting in its algorithm for deciding whether a precedent was 

“stronger” or “weaker” than the case at hand. For example, if a party disclosed a trade secret to two 

outsiders, that sharing was deemed to be meaningfully worse than if the party had disclosed the secret to 

only one outsider. In practice, however, it is easy to conceive of a situation in which one improper 

disclosure would be more legally significant than two improper disclosures. 

 57. These programs are discussed in ASHLEY, supra note 3 at 73–106. 

 58. See id.  
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features and not others. 
Consider the task of searching a legal IR system for cases involving 

negligence claims in which the defendant, a motorist, ran a red light and 
caused an accident. A basic method of searching for relevant cases would 
be entering a search query such as vehicle “red light” 

negligence and allowing the system to then search its case database 
for cases that mention those three terms.59 The system may return only 
cases that contain all three terms or use a more generous algorithm to 
retrieve cases containing only one or two of the terms. After determining 
which cases to retrieve, the system can rank the cases based on some 
measure, such as the number of times each case mentions the three search 
terms. 

There are various ways to build on this elementary system. For 
example, the system could use query expansion, automatically expanding 
the search query to include similar or related terms such as “stop light” 
and “traffic signal” for “red light,” or “car” and “automobile” for 
“vehicle.”60 The system could also use TF-IDF searching to retrieve 
documents that not only mention the terms but mention the terms 
proportionally more often than other cases in the database.61  

Our example search query—vehicle negligence “red 

light”—can be understood as a feature vector in which each term 
corresponds to a feature that exists or does not exist in the IR database’s 
case documents. Recent advances allow IR systems to interpret both 
search queries and a database’s cases as more complex and meaningful 
feature vectors for purposes of matching the query to target cases. For 
example, instead of checking whether a case includes the term 
“negligence,” it is possible for a system to make an educated guess as to 
whether the case deals with the concept of negligence.62 Then, the 
relevant search feature would not be the term “negligence,” which is 
nothing more than a string of characters, but the idea of a negligence 
case—that is, a tort case in which one of the plaintiff’s claims is 
negligence. 

Legal IR developers have also come up with increasingly creative and 

 

 59. By entering “red light” in quotation marks, we instruct the search engine to treat the phrase as 

a single term. 

 60. See ASHLEY, supra note 3, at 227. 

 61. TF-IDF is short for “term frequency / inverse document frequency,” a simple mathematical 

measure of the relative importance of a term in a document as compared with other documents in a corpus. 

The measure indicates a term’s “frequency in the document discounted by its frequency in the corpus.” 

Id. at 237. TF-IDF allows a search engine to consider how rare a search term is. For example, if a corpus 

of judicial opinions contained only negligence cases, the search term “negligence” would contain no 

information to help distinguish one opinion from another. A search engine using TF-IDF could effectively 

assign that term little weight in the search query. 

 62. See id. 
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complex ways to map relationships among the cases in a database; if a 
search query identifies one case, the IR engine can also retrieve cases 
related to that initial case. One way to accomplish this is through 
identifying whether cases share common concepts, as discussed above. 
Another is to use citation networks that consider, for example, what cases 
an opinion cites or is cited by and how often those related cases 
themselves are cited by other cases. Note that citation networks can be 
thought of as recommendation mechanisms in which one case 
recommends another as potentially relevant based on their common 
citations. 

Three other IR technologies deserve mention: 

(1) Document vectorization.63 For purposes of an IR program that 

retrieves judicial opinions, an opinion in the database can be thought 

of as a collection of features such as terms or concepts that are either 

present in or absent from each case. The IR system uses features in the 

search query to identify cases having similar features. 

 

However, there is another, more abstract way to represent a case or 

other text. The text can be computationally represented as a point in a 

multidimensional space. The point’s location is ultimately determined 

by the presence or absence of features in a feature vector, but the 

feature vector is transformed into a single point and cannot necessarily 

be reverse engineered based on the point’s location. Though the details 

of this idea are beyond this Article’s scope, suffice it to say that similar 

texts (i.e., texts with similar feature vectors) are geometrically closer 

to each other than texts that share little in common. 

 

The idea of representing an entire document as a point has given rise 

to what I consider the most useful and intriguing development in legal 

reasoning in recent years: the ability to submit entire documents as 

search queries. For example, instead of submitting the query 

vehicle negligence “red light,” a litigator could submit 

an opposition brief or trial court opinion from the litigator’s current 

case.64 That document would then be transformed into a feature vector, 

represented as a point in a multidimensional feature space, and the 

search would return documents (e.g., cases) that are closest in space to 

the query document. 

 

(2) Relevance feedback. Relevance feedback techniques in IR 

systems allow users to indicate whether retrieved results are relevant. 

Users can do so either explicitly or implicitly by, for example, clicking 

 

 63. See, e.g., Anita Kumari Singh & Shashi Mogalla, Vectorization of text documents for 

identifying unifiable news articles, 10 INT’L J. ADV. COMP. SCI. APPL. 305, 305–08 (2019). 

 64. I have tried two commercial IR systems that offer document-based searching: CaseText’s 

CARA AI and Westlaw’s “Quick Check.” 
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on the document and spending screen time reading it. These user 

actions provide additional information that can either bolster a 

previous search query or serve as a new search query to retrieve 

documents similar to the document marked as relevant. 

 

One can imagine building machine learning systems that turn users’ 

judgments of relevance into labeled data to predict relevant documents 

for future queries. For example, a machine learning program might be 

trained on data consisting of a search query paired with a document 

marked as relevant to that search query. In this example, the query is 

the sample or training instance, while the relevant document is the 

“label” associated with the training instance. Software trained in this 

way might be able to map future queries to documents likely to be 

relevant. Because commercial IR programs do not generally disclose 

how their proprietary systems work, it is unclear whether such a 

mechanism is currently being used. 

 

(3) Text summarization. Another potential area for advances in AI is 

in text summarization, particularly in multi-document summarization, 

such as an algorithm that extracts rules from a set of judicial opinions. 

Because legal propositions are often followed by citations, it is often 

possible to distinguish rules from other statements in a case 

automatically. A multi-document text summarization program might 

be able to identify and extract similar rule statements that recur in a 

batch of cases. 

ii. Advances in e-Discovery 

Electronic discovery, or “e-discovery,” is a notoriously time-
consuming and expensive task.65 In complex and high-stakes litigation, 
attorneys and paralegals might be forced to sift through hundreds of 
thousands of documents in search of relevant information that could affect 
the case’s outcome. This task is becoming increasingly manageable, 
however, because of the advent of tools that use modern NLP, search, and 
recommendation-engine technologies to help users identify related 
documents and classify documents as either relevant or not-relevant. 

Recommendation engines are algorithms that recommend content to 
users based on the users’ explicit or implicit preferences.66 For example, 
Amazon recommends products to users based on what products they have 
browsed or clicked on in the past. Facebook recommends stories to users 
based on what content they have “liked” or clicked on in the past. Modern 

 

 65. See, e.g., David Degnan, Accounting for the Costs of Electronic Discovery, 12 MINN. J.L. SCI. 

& TECH. 151 (2011). 

 66.  See, e.g., Prem Melville and Vikas Sindhwani, Recommender Systems, 1 ENCYCLOPEDIA OF 

MACHINE LEARNING 829–38 (2010). 
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recommendation engines often rely on a combination of supervised and 
unsupervised machine learning to group users or content into clusters.67 
In the e-discovery context, a user’s decision to mark a certain document 
as “relevant” can be used to point the user to other potentially relevant 
documents that have something in common with the first document. 
Additionally, by marking certain documents as relevant, the user may be 
training a classification algorithm that can become increasingly good at 
predicting the relevance of unseen documents. Documents that share 
common features with documents marked as relevant are more likely to 
be relevant. 

The novel search technologies discussed above also have applications 
in the e-discovery context. For example, a lawyer might search the bank 
of discovery responses for documents similar to an original document. 
Using document vectorization, the original document can be used as the 
search query, and the system can return documents that have similar 
features. 

2. Expert Systems for Assisted Legal Decision-Making 

Not every aspect of the law is equally pervaded by vagueness and 
indeterminacy. In some domains, such as tax and immigration law, the 
principal reason for complexity lies in the number of potentially 
applicable rules and their arrangement in a thicket of statutes and 
regulations. There is a role for AI programs that could help lawyers 
navigate such complexity. 

At the outset, we should make clear that computer programs 
substituting for human judgment by making binding legal decisions is not 
a desirable goal.68 Law is a high-stakes affair, with rights and livelihoods 
in the balance. There is little reason to believe that even an advanced AI 
system could perform many of the functions involved in resolving a 
dispute; a computer cannot weigh a witness's credibility. Additionally, a 
computer can consider only the factors that it has been programmed or 
trained to consider. If a dispute involves some novel fact that, in the eyes 
of a human judge, might justify a departure from precedent or an 
exception to a rule, a computer might be blind to that novel fact because 
it has not learned to look for it and has no mechanism by which to weigh 
its significance. 
 

 67. See, e.g., Christina Christakou, et al., A Movie Recommender System Based on Semi-

Supervised Clustering 2, INT’L CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, 

CONTROL AND AUTOMATION AND INT’L CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES 

AND INTERNET COMMERCE (2005). 

 68. See, e.g., Sergot, supra note 16, at 37 (“Most legal applications are so sensitive, however, that 

it would never be acceptable to let a machine make legal decisions, whether it can explain its conclusions 

or not.”). 
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However, one thing that we can fairly expect of AI in the legal 
profession is that AI-enhanced software programs can be used 
instrumentally as tools to help people decide disputes or navigate legal 
complexity. 

One example is Intuit’s TurboTax. The Internal Revenue Code is so 
forbidding that many lawyers refuse to handle tax issues, instead referring 
those matters to specialists (many of whom have obtained LLMs in tax 
law in addition to their JD degrees). TurboTax has nevertheless helped 
hundreds of thousands of Americans file their taxes on their own without 
resorting to accountants or tax attorneys. It does so by guiding the user 
through a complex flowchart of questions. If the user answers “yes” to 
certain questions, new lines of relevant questions are triggered. At the end 
of the process, embedded legal rules are applied to the user’s answers to 
conclude how much tax the user owes, and any necessary tax forms are 
filled out on the user’s behalf. The program can then file the taxes 
electronically. In tech-speak, the software succeeds by reducing the 
“friction” involved in doing one’s taxes. 

Though expert systems are usually understood as failed experiments of 
the past, TurboTax can be understood as a modern expert system. In 
addition to making people’s lives more convenient, it helps democratize 
legal knowledge by making it accessible. 

Crucially, expert systems like TurboTax tend to delegate 
computationally-difficult problems to the user. For example, if TurboTax 
is unsure how to classify certain income, the software is not likely to 
guess; instead, it is likely to ask the user to classify the income while 
presenting the user with a pop-up explaining the applicable rules. 

One can imagine building other expert systems on TurboTax’s model, 
especially where the requisite legal knowledge can be easily expressed as 
a set of flowcharts and if-then rules. For example, TurboTax-like software 
might be able to help a married couple apportion property during a 
divorce by guiding them through a set of questions whose answers tend 
to show whether certain assets are community or separate property. In that 
way, expert systems can help make legal help more accessible and 
affordable. 

Such software can also be designed for lawyers and judges rather than 
for the general public, such as an expert system designed to help a judge 
navigate the federal sentencing guidelines.69 In a bank robbery case, the 
system could ask questions such as: 

- What statute was violated? 

- [If the criminal statute targets theft, ask:] Was money taken from a 

 

 69. To understand what applying the sentencing guidelines entails, see UNITED STATES 

SENTENCING COMMISSION, FEDERAL SENTENCING: THE BASICS (Nov. 2018). 

26

University of Cincinnati Law Review, Vol. 90, Iss. 3 [2022], Art. 5

https://scholarship.law.uc.edu/uclr/vol90/iss3/5



2022] LIMITS OF LAW AND AI 949 

“financial institution?” (Here, the software could link to a pop-up with 

the statutory or regulatory definition of “financial institution” and to 

any applicable caselaw). 

- [If the criminal statute targets theft, ask:] How much money was 

stolen? 

- [If the criminal statute targets robbery or other use of force, ask:] Did 

the defendant brandish a “dangerous weapon”? (Again, the software 

could link to information that defines that term, but the software need 

not try to infer the answer on its own). 

Answering such questions can lead the program to recommend a 
sentencing range and, if using a template system, develop the beginnings 
of a presentence report. The program would not give too much power to 
the algorithm because the human judge would be required to assist the 
algorithm at each juncture in which human interpretation is advisable. The 
software need not attempt to resolve any ambiguity or exercise any 
discretion on its own. 

A variation on such expert systems is software that asks the user to 
supply relevant information and then uses that information to generate 
documents with templates. Some legal tasks such as business formation, 
simple contracts, and wills can at times be relatively simple, and these 
tasks can be assisted by a template program. For example, a will-
generation program might ask the user whether she wishes to be an organ 
donor. If the user answers “yes,” the program could insert a boilerplate 
organ donation provision into the will. 

IV. CONCLUSION 

Advances in machine learning and even “deep learning” do not remedy 
the basic obstacles to making law computable discussed in this Article. 
Machine learning does not involve reasoning; rather, it involves pattern 
detection. Machine learning software typically consists of prediction-
making models that refine themselves over time through exposure to new 
data. To point to machine learning or deep learning as a potential solution 
to the problem of making law computable, one must be able to describe 
the task one wants the machine-learning model to perform,  identify the 
program’s inputs and outputs, and supply the training data from which the 
software will build a predictive model. Additionally, machine learning 
systems cannot engage in reasoning or understand natural-language texts 
like human readers can. 

Although there may be fruitful applications of machine learning for 
legal predictive analytics and classification tasks, such as e-discovery 
document review, an important role remains for traditional symbolic AI 
techniques in legal applications of AI. Modern information retrieval 
systems allow users to search for information in creative new ways, 
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including uploading entire documents as search queries. Modern expert 
systems such as TurboTax show that computer programs can work 
collaboratively with a user to help a user solve complicated legal 
problems, even if the computer itself cannot exercise legal judgment in 
difficult questions involving vague legal standards. 
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